
UCRL-JC-125439

PREPRINT

Steering Object-Oriented Computations with Python

T.-Y. B. Yang
D. M. Beadey
P. F. Dubois
G. Furnish

This paper was prepared for submittal to the
Python Conference
Washington, DC

November 3-5, 1996



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government.  Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



/“

Steering object-oriented computations with Python

T.-Y. B. Yangl, D. M. Beazley2, P. F. Duboisl, and G. Furnishl

lLawrence Livermore National Laboratory

‘Department of Computer Science, University of Utah

1.0 Introduction

We continue working towards our goal to create a “plug and play” programmable inter-
face for our applications using Numeric Python (Hang et. al., June 1996 Python Confer-
ence Proceedings http:/Avww.python.erg/workshops/l 996-06/papers/). In this progress
report we describe our current approach to steering C++ computations with a Python shell.
Our experiments have included shadowing C+t objects, combining Tk interfaces with
scripting, Python on parallel processors, and using interface generators. We also includes a
brief summary of the status of various Python extensions we are working on at LLNL and
LANL (Los Alamos National Laboratory).

2.0 Shadowing C++ Objects and Interface Generation

One of our projects is to develop a physics application in C++ with Python interface. The
application consists of C+t classes grouped into a few modules. The instances of the
classes interact with one another to simulate physics processes. The creation and the cho-
reography of these instances (C++ objects) are performed from the Python interpreter. In
other words, users can steer the simulation from Python. In order to achieve the steerablil-
ity, these C++ objects must each has a handle (or shadow) at the Python level. We have
implemented an extension types in C, i.e., cplus_shadow type. For each C++ class of
which we wish to create instances from Python, there is a method whose function is to
instantiate an instance of the class as well as to create a Python shadow for the instance. ,
This creation method is an attribute of the module object to which the class belongs.

The present design is to make the shadow object feel and look like the shadowed C++
object as much as possible. If ‘x’ is a public data member of a class and ‘foo’ is a shadow
object for the class. typing ‘foo.x = <new value>’ at the Python interpreter changes the
value of the data member ‘x’ of the shadowed C++ object. This is done by the appropriate
implementation of cplus_shudow type’s setattr function, which calls the interface function
corresponding to x. If ‘x’ is of a C++ fundamental type, the interface function uses the
proper Python C API (e.g., PyInt_AsLung if ‘x’ is of type ‘int’) to convert <new value> to
the appropriate type. The type conversion also serves as the Run-time type checking. On

October 29, 19% 1



the other hand, if ‘x’ is declared to be an instance of a C++ class, or a pointer to such an
instance, the interface function uses the type information stored in the shadow object to
assure that the type of cnew value> conforms to the type of ‘x’, i.e. the CtF object shad-
owed by <new value> is of the same type as ‘x’, or is of a type directly or indirectly inher-
its from that of ‘x’ through public inheritance. The getattr function of cplus_shadow type
is also implemented such that the shadow object feel and look like the shadowed C++
object. Type checking similar to that for public member assignment is also performed for
the arguments of C++ public member functions.

Our C++ application also heavily uses template. Since template classes need to be instan-
tiated during compiling and linking, our current treatment is to write for each template
instance a separate set of interface functions including the creation function.

For example, if a class is declared as:

templatecclass T> class Foo {

...

}

and we wish to create instances and the corresponding shadow objects for the classes
Food> and FoocB>, two separate creation functions hydro_new_Foo_of_A and
hydro_new_Foo_of_B are written, where hydm is the name of the module. Since the
implementation of hydro_new_Foo_of_A involves creation of an instance of FoocA>, the
template will be instantiated during compiling and linking, and similarly for FoocB>.

The following is an example showing how a C++ application can be steered from Python:

>>> import Geom, Hydro

>>> mesh = Geom.create_K_Mesh(ncx l=100)

>>> hydro = Hydro.create_Noh_ ld(’’K_Mesh”, mesh, Noh_delta=l, gamrna=l .6666667 )

Two C++ objects and their shadows have been created from Python as a result of the above
Python statements. The objects are instances of the C++ classes K_Mesh and
iVoh_ldeK_Mesh>, respectively. The file Hydro.py, for example, contains the following
Python code:

import hydro

Error = ‘Hydro error’

def create_Noh_ld(template, mesh, **keywords):

w

ret = getattr(hydro~’new_Noh_ ld_of_” + template) (mesh)

October 29, 19% 2



except AttributeError:

raise Error, \

“template not instantiated for Noh_lde’’+tempiate+”>”

for kw in keywords.keyso:

w

setattr(ret, kw, keywords[kw] )

except AttributeEmor:

raise Error, kw + ‘ is not an acceptable keyword’

return ret

The module hydro is a C++ extension module. One of the attributes of the module object
hydro is the methods new_Noh_ld_of_K_Mesh which creates a new instance of the C++
class Noh_ldeK_Mesh> as well as the instance’s shadow. If another instance of the tem-
plate class Noh_ld, say Noh_ld<L_Mesh>, does not have a corrupting creation method as
an attribute of the module object hydro. The following statement:

>>> hydro = Hydro.create_Noh_ ld(’’L_Mesh”, mesh, Noh_delta=l, gamrna=l .6666667 )

will raise an error with the message ‘template not instantiated for Noh_l dcL_Mesb’.
The function create_Noh_ld also takes keyword arguments to override default values of
the data members of the class Noh_ld. If a keyword, say abc, which does not correpond to
a public data member of Noh_ld is given as an argumen~ an error will be raised with the
message ‘abc is not an acceptable keyword’.

After the two C++ objects with their shadows named mesh and hydro have been created,
the following python script will run the application for 500 steps.

t=o

dt = O.0000001

for i in range(500): .

if i$ZOIO== O:

print “timestep =” , i, “ t =”, t

hydro.advance (dt)

t=t+dt

oCtOk 29, 19% 3



We are also learning the interface generating tools SWIG (Simplified Wrapper and Inter-
face Generator) and GRAD (Grammar-based Rapid Application Development). The ways
that SWIG and GRAD shadow C++ objects are very similar to each other. For each C++
class, a shadow class, which is a Python class object, is created. A C++ instance of the
class is then shadowed by a Python instance object of the Python shadow class. More
detailed description of the Python shadow classes is given in the next section. In contrast,
cp/us_shadow type object in our application is more like the Python instance object with
the corresponding class object hidden from the Python interpreter. Although it has not yet
been implemented, the getuttr and setattr functions of cplus_shadow type can be extended
to allow adding attributes and methods to the object after its creation, just like the Python
instance object. In whichever way we shadow the C++ object, the setattr fi.mction (or
_setattr_ for the Python class) should avoid overriding a method corresponding to a
C++ public member function, since such an overriding results in inconsistent implementa-
tions of the class between the points of view of the C++ code and the Python code. This
concern is also the reason for our ongoing debate on the merits of having shadow classes
which are Python ciass objects. On the one hand, such shadow classes allows inheritance
and addition of new attributes and methods from Python interpreter. On the other, exist-
ence of the shadow class objects also allows overriding existing methods for all the
instance objects created before or after the overriding, an undesirable side effect for imple-
mentation consistency.

Another thing that we have given considerable thoughts is the interface for pointers to
C++ fundamental types. Such pointers are frequently used to point to the addresses for
arrays whose shapes are not known during compiling and linking. Although we don’t con-
sider this practice a good style of programming, we want to be prepared. SWIG and
GRAD currently turn a C++ pointer into a built-in Python type object (string for SWIG
and long integer for GRAD). Since it takes more than the address of the data to speci$ a
multi-dimensional array, we think this is the best we can do as far as interface to the com-
piled code is concerned. However, we plan to write a function which will allow users to
create a PyArray type object if the users also know the variables specifying the shape of
the array. PyArray type is implemented by Jim Hugunin in the Numeric module. The C
API PyArray_FronzDhrzsAndData in the module can be used to shadow over a data area
which is allocated in the compiled code. It will also be useful to implement a function that
serves the reverse purpose, i.e., to turn a PyArray type object into a tuple containing the
Python objects corresponding to the pointers for the data and the shape, respectively,
which can be passed as arguments to functions expecting pointer arguments.

3.0 Another Way to Shadow C++ Objects: Python Shadow
class

A Python shadow class is essentially a Python class that has been wrapped around an
underlying C or C++ class. By doing this, the goal is to produce a Python object that
behaves like a normal Python object, but also feels a lot like a C/C++ object. For Physics
codes, this mapping is especially important since a physicist may be working with various
objects in both Python and C/C++ and it is useful for them to appear similar in both lan-
guages.

October 29, 19% 4



As an example, a Physics code might have the following data structures

struct Vector {

double x,y,z; 1
i,

};

struct Particle {

Particleo;

-Particleo;

Vector r; // Position

Vector v; II Velocity

Vector t // Force

int type; //type

};

A few very simple Python shadow classes for these structures might look something like
the following:

import shadow

class Vector:

def _init_(self, this):

self.this = this

def _setattr_(self,narne, value):

if name == “x” :

shadow.Vector_x_set(self.this, value)

return 1

...

self._dict_[name] = value

def ~etattr_(self, name):

if name == “x” :

October 29, 19% 5



return shadow.Vector_x&et(self. tis)

...

return self._dict_[name]

class Particle :

def _init_(self):

self.this = shadow.new_Particleo

def _setattr_(self,narne,value):

if name == “r” :

shadow.Particle_r_set(self.tis, value. this)

return

...

if name == “VW” :

shadow.Particle_type_set(self.r,h.is,vdue)

return

self._dict_[name] = value

def _getattr_(self,name):

if name =- “r” :

return Vector(shadow.Particle_r~et(self.this))

...

if name == “type” :

return shadow.Particle_type~et(self.this)
1

return self._dict_[name]

In this case, ‘shadow’ is a module containing a collection of C fi.mctions to access various
parameters from our data structures. These functions could have been created by SWIG,
GRAD, or some other automatic wrapper generator. These C functions have then been
encapsulated in a Python class that mirrors the underlying data structures. A pair of getattr
and setattr functions provide access to individual members. For constructing the objects,

&tOk 29, 19% 6



one can call a C++ constructor as shown in the Particle class or simply create an object
from an already existing pointer as shown for the Vector class.

When used from Python, these shadow classes allow us to do the following:

>>> p = Particleo

>>> p.r.x = 0.0

>>> p.r.y = 2.0

>>> p.r.z = 2.5

>>> p.v.x, p.v.y, p.v.z = (0.0, 0.0, 0.0)

>>> p.f = p.v

>>> p.type = 2

>>> ... etc ...

While this is only a simple example, shadow classing can be successfully used in larger
systems (in fact it has been used extensively in Python-controlled large-scale molecular
dynamics simulations at Los Alamos National Laboratory).

4.0 Python on Massively Parallel Processing (MPP) Systems

Python uses the C stdio library for many operations, including reading scripts from files,
importing modules, getting input from the user, and writing byte-compiled versions of
modules back to disk. On massively parallel processor (MPP) systems, these operations
pose a serious problem. David Beazley have developed an I/O scheme for running Python
on MPP systems. His scheme consists of a special header file pstdlo.h to remap the I/O
operations, and I/O wrapper functions implemented using a combination of the C stdio
library and message passing operations. The header file pstdio.h is included into the
Python header file prior to the inclusion of the C stdio.h header file. This remaps all of the
stdio operations to the I/O wrapper fimctions. Two different I/O modes are allowed in this
scheme:

BROADAST. In this mode, processor Oreads data and broadcast it to all of the other
nodes. When writing, output is assumed to come from only one processor. This mode is
primarily used for handling interactive I/O using stdin and stdout.

BROADCAST_WRITE. This mode allows all processors to read data independently,
but only one processor can write data. This mode is used for most file operations in
Python.

Currently, David has implemented the wrapper under CMMD on the CM-5, the shared
memory library on the T3D, and MPI. He is also using Python to control large-scale simu-

oCtObtX29. 19% 7



Iations (molecular dynamics in particular) running on the CM-5 and T3D at Los Alamos
National Laboratory.

We have tried this parallel I/O scheme on LLNL T3D and found David’s scheme very suit-
able for our applications. The LLNL T3D has 256 processing elements (PEs), front-ended
by a host system, a three processor Cray Y-MP. In our computation model, light-weight
Python interpreters, with our physics applications as built-in modules, run on the PEs and
communicating among themselves using routines provided by the message-passing
library. A full-blown Python interpreter, running on the front end host, serves as the user
interface. The Python enhanced applications on the PEs. and data processing capability of
the front-end Python interpreter, provided by the Python modules including the graphics
and Numeric modules, will allow our users to perform interactive data processing as well
as the computation steering on MPP systems

To further elucidate our model, we will use the following scenario as an example. A three-
dimensional (3-D) hydrodynamics simulation is being carried out using domain-decompo-
sition algorithm. Each PE has only detailed information about the domain belonging to the
PE but lacks the global information about the simulations. The front-end Python inter-
preter, on the other hand, has an global view of the problem but lacks the most up-to-date
detailed information of the simulations. Let’s suppose that a user wants to view data on a
slice of surface of the 3-D simulation. The front-end host may not have enough memory
and disk space to store the information of the 3-D data. Besides, it is a waste of time and
space to move all the 3-D data to the front end when the user only wants to view a 2-D
slice of the simulation. An efficient way to carry out the user’s request is that the front-end
Python interpreter process uses it global information to convert the user request into a
algorithm described by a Python script (or one Python script for each PE) which is then
moved to the PEs. The Python process on each PE parses this script and determines which
data on its domain should be transmitted to the front-end host. After receiving the data
transmitted by the PEs, and front-end Python interpreter can then render the image
requested by the user.

One thing worth mentioning is that LLNL T3D is not a time-sharing system, and it is
undesirable to leave PEs idle while the user is doing interactive data processing. In the
above scenario, conversion of the user request to the Python script is done by the front-end
process, which may run on the Cray front-end host or a remote work station. Every so
often, while the PEs carry out synchronization among themselves, they also look for
Python scripts created by the front-end interpreter. If there is no Python script requesting
any service, the PEs will continue their regular computation. Otherwise, the PEs will carry
out the service described in the Python script and return to their usual business after finish-
ing the service.

In its preliminary form, the Python script requesting for service and the requested data are
stored in files and moved between the front-end host and PEs. We plan to explore the pos-
sibility of using Inter-Language Unification (ILU) system as the vehicle for the exchange
of information between the front-end process and those on the PEs.

October 29, 19% 8



5.0 Tk interfaces with Scripting

A Tk interface was built for one of our applications using the Tkinter module. At the click
of a button, our application can be initialized or run a few steps. Variables can be plotted
versus one another by simply clicking a button. The Tk interface, however, has the disad-
vantage of being not as programmable as the interpreter. At times, our user may want to do
some data processing that was not anticipated when the Tk interface was built. In order to
take advantage of both mechanisms, we added a ‘Interpreter’ button to the Tk interface. At
the click of the ‘Interpreter’ button, the window where the application is evoked becomes
the window for the Python interpreter which has the full control of the application as if the
Tk interface did not exist. When the user type ‘D at the interpreter prompt, the control is
returned to the Tk interface. To implement the ‘interpreter’ button, we added the following
method to physicsmodule.cc which is one of the C++ extension modules.

static PyObject *physics_interpreter(PyObject *self, PyObject *args)

{

if (!PyArg_ParseTuple(args, ““))

return NULL;

if (PyRun_AnyFile(stdin, “estdin>”) == O)

return Py_BuildValue(’’s”, “interpreter ends”);

else

return Py_BuildValue(’’s”, “interpreter ends with an error”);

}

The Python module where the widgets are implemented contains the following lines of
code:

from Tkinter import *

import physics

class Application(Frame): ‘

def _init_( self, master=None ):

Frame._init_( self, master)

self.createWidgetso

self.packo

oCtObCl 29, 1996 9



def createWldgets( self ):

self.Interpreter = Button( self, { “text” : “Interpreter”,

“command” : self.interpreter_back } )

self.Interpreter.packo

...

def interpreter_back(self):

print physics.interpretero

We once considered PTUI (Python/Tkinter User Interface, http://www.lems.brown.edti
-zacldptui.htrni) as a tool for the above purpose, but could not find an easy way to gain
access to the dictionary of the _main_ module. PTUI is a good development tool for
applications written in Python. It allows multiple buffers with individual namespaces. For
the above purpose, however, we would like the interpreter to have the same namespaces as
the Tk interface.

6.0 Summary

We have described our current approaches and future plans for steering Ci+ application,
running Python on parallel platforms, and combination of Tk interface and Python inter-
preter in steering computations. In addition, there has been significant enhancement in the
Gist module (to be presented by Zane Motteler). Tk mega widgets has been implemented
for a few of our physics applications (to be presented by Geoff Furnish). We have also
written Python interface to SILO, a data storage package used as an interface to a visual-
ization system named MeshTV, developed by another division at LLNL. Python is being
used to control large-scale simulations (molecular dynamics in particular) running on the
CM-5 and T3D at Los Alarnos National Laboratory as well. A few other code develop-
ment projects at LLNL are either using or considering Python as their steering shells. In
summary, the merits of Python have been appreciated by more and more people in the sci-
entific computation community.

Acknowledgments

We are gratefid for valuable discussions with Charlie Fly, Robin Friedric, and Greg Bees.
The research described here was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-
ENG-48.

October 29, 1996 10


